Mechanical tests of the gravity-quantum interface

Vivishek Sudhir MIT

Sub-SQL monitoring of mechanical motion

Preparation of quantum states of mechanical motion

Idea of LoI: use sub-SQL precision for fundamental tests

Requirements

Benchmarks:

- Massive $(M>M_P\approx 26~\mu {\rm g})$ mechanical oscillators measured at their motional ground state
- Ultra-high-frequency oscillators (single electron?) in deep cryogenic environment ($\sim 10~\text{mK}$) measured with sub-SQL precision
- Low-environment-noise cryogenic facility (being developed at MIT)
- Techniques to measure single electron motion in a quantum-noise-limited manner

Plans for Snowmass21

- Feasibility studies (→ contributed papers)
- Collaboration with HEP community to understand SRF cavity technology
- Detailed theoretical understanding of systematics
- Begin development of experiments

What do we hope to get out of Snowmass?

- Collaboration with HEP community to
 - <u>understand and translate</u> technologies of interest
 - contextualize precision experiments at the gravity-quantum interface